Research Overview
The Senftle Group uses advanced computational modeling to understand how catalytic materials work and to design new systems for addressing environmental and energy challenges. Our research spans multiple scales, from quantum-level simulations of chemical reactions to machine learning models that reveal fundamental structure–activity relationships. A major focus of the group is developing catalysts for environmental remediation, including breaking down persistent “forever chemicals” such as PFAS, reducing nitrates in drinking water, and detecting harmful polyaromatic hydrocarbons in soil. We also advance clean energy technologies by modeling catalytic processes for alkane reforming, carbon nanotube growth, CO₂ conversion, as well as by studying next-generation battery electrode materials. We also apply interpretable machine learning methods to catalysis, creating new algorithms that uncover physically meaningful descriptors of catalyst performance. By integrating electronic-structure theory, multi-scale simulations, and data-driven approaches, while working closely with experimental collaborators, we aim to accelerate the rational design of catalytic technologies that promote sustainable energy and a healthier environment.
Publications
A continuously-updated list of publications can be found here: Google Scholar
Open-source code accompanying our publications can be found here: GitHub
Advisees are underlined
2025
75. Yao, G.; Hong, K.; Senftle, T. P.; Wong, M. S.*; Rittmann, B. E.*, “The membrane catalyst-film reactor (MCfR) extends PGM capability for water purification.” Johnson Matthey Technology Review 2025 https://doi.org/10.1595/205651326X17550075510121. [pdf]
74. Li, Z.; Wang, P.; Han, G.; Yang, S.; Roy, S.; Xiang, S.; Jimenez, J. D.; Kondapalli, V. K. R.; Lyu, X.; Li, J.; Serov, A.; Li, R.; Shanov, V.; Senanayake, S. D.; Frenkel, A. I.; Ajayan, P. M.; Sun, Y.*; Senftle, T. P.*; Wu, J.*, “Ampere-level co-electrosynthesis of formate from CO2 reduction paired with formaldehyde dehydrogenation reactions.” Nature Communications 2025, 16, 4850. [pdf]
73. Ju, Y.; Neumann, O.; Denison, S. B.; Jin, P.; Sanchez-Alvarado, A. B.; Nordlander, P.; Senftle, T. P.; Alvarez, P. J. J.; Patel, A.*; Halas, N. J.*, “In silico machine learning–enabled detection of polycyclic aromatic hydrocarbons from contaminated soil.” Proceedings of the National Academy of Sciences 2025, 122 (19), e2427069122. [pdf]
72. Mohammadi, S.; Sandoval-Pauker, C.; Dorado, Z. N.; Senftle, T. P.; Pankow, R.; Sharifan, H.*, “Fluorescent sodium alginate hydrogel–carbon dots sensor for detecting perfluorooctanoic acid in potable water.” Analytical Chemistry 2025, 97 (18), 10075–10084. [pdf]
71. Glass, S.; Santiago-Cruz, H. A.; Chen, W.; Zhang, T.; Guelfo, J.; Rittmann, B.; Senftle, T. P.; Vikesland, P.; Villagrán, D.; Wang, H.; Westerhoff, P.; Wong, M. S.; Jiang, G.; Lowry. G. V.*; Alvarez, P. J. J., “Merits, limitations and innovation priorities for heterogeneous catalytic platforms to destroy PFAS.” Nature Water 2025, 3, 644-654. [pdf]
70. Glass, S.; Kannan, H.; Bangala, J.; Chen, Y.; Metz, J.; Mowzoon-Mogharrabi, R.; Gao, G.; Kumar Meiyazhagan, A.; Wong, M. S.; Ajayan, P. M.*; Senftle, T. P.; Alvarez, P.J.J.*, “Iron doping of hBN enhances the photocatalytic oxidative defluorination of perfluorooctanoic acid.” ACS Applied Materials & Interfaces 2025, 17 (15), 22803-22811. [pdf]
2024
69. Wang, P.; Senftle, T. P.*, “Addressing challenges in modeling complex structures in heterogeneous catalysis.” (Book Chapter) Computational Catalysis 2024, 48, 301-333. [pdf]
68. Khalil, S.*; Alazmi, A.; Gao, G.; Martínez-Jiménez, C.; Saxena R.; Chen, Y.; Jiang, S-.Y.; Jianhua Li, J.; Alhashim S.; Senftle, T. P.; Martí A. A.; Verduzco, R., “Continuous synthesis and processing of covalent organic frameworks in a flow reactor.” ACS Applied Materials and Interfaces 2024, 16 (41), 55206-55217. [pdf]
67. Chen, Y.; Senftle, T. P.*, “Theoretical insight into the NO* Coverage-Dependent selectivity of Pd and Cu electrocatalysts for nitrate reduction.” Journal of Catalysis 2024, 438, 115706. [pdf]
66. Denison, S. B.; Jin, P.; Zygourakis, K.; Senftle, T. P.*; Alvarez, P. J. J.*, “Mechanistic implications of the varying susceptibility of PAHs to pyro-catalytic treatment as a function of their ionization potential and hydrophobicity.” Environmental Science and Technology 2024, 58, 13521-13528. [pdf]
65. Jiang, S-. Y.; Senftle, T. P.*; Verduzco, R.*, “Challenges in photocatalysis using covalent organic frameworks.” Journal of Physics: Photonics 2024, 6, 031001. [pdf]
64. Calvillo Solis, J. J.; Sandoval-Pauker, C.; Bai, D.; Yin, S.; Senftle, T. P.; Villagran, D.*, “Electrochemical reduction of perfluorooctanoic acid (PFOA): An experimental and theoretical approach.” Journal of the American Chemical Society 2024, 146 (15), 10687-10698. [pdf]
63. Fadaeerayeni, S.; Lyu, X.; Fang, L.; Wang, P.; Wu, J.; Li, T.*; Senftle, T. P.*; Xiang, Y.* “Intermetallic Ni3Ga1 catalyst for efficient ammonia reforming of light alkane.” Journal of the American Chemical Society 2024, 146 (4), 2646-2653. [pdf]
62. Zhu, D.; Chen, Y.; Zhu, Y., Liu, C-.Y.; Yan, Q.; Wu, X.; Ling, K.; Senftle, T. P.*; Verduzco, R.*, “Versatile metal-free photocatalysts based on 3D covalent organic frameworks capable of reductive and oxidative organic transformations and polymerizations.” Macromolecules 2024, 57 (3), 1038-1049. [pdf]
61. Long, M.; Chen, Y.; Senftle, T. P.; Elias, W.; Heck, K.; Zhou, C.*; Wong, M. S.; Rittmann, B. E. “The method of H2 transfer is vital for catalytic hydrodefluorination of perfluorooctanoic acid (PFOA).” Environmental Science and Technology 2024, 58, 2, 1390-1398. [pdf]
60. Wang, B.; Chen, Y.; Samba, J.; Heck, K.; Huang, X.; Lee, J.; Metz, J.; Bhati, M.; Fortner, J.; Li, Q.; Westerhoff, P.; Alvarez, P.; Senftle, T. P.*; Wong, M. S.*, “Surface hydrophobicity of boron nitride promotes PFOA photocatalytic degradation.” Chemical Engineering Journal 2024, 483, 149134. [pdf]
59. Li, Z.; Wang, P.; Lyu, X.; Kondapalli, V. K. R.; Xiang, S.; Jimenez, J. D.; Ma, L.; Ito, T.; Zhang, T.; Raj, J.; Fang, Y.; Bai, Y.; Li, J.; Serov, A.; Shanov, V.; Frenkel, A. I.; Senanayake, S. D.; Yang, S.*; Senftle, T. P.*; Wu, J.*, “Directing post-C–C coupling pathways of electrochemical CO2 reduction toward a specific C2 product by single-site doped Cu catalysts.” Nature Chemical Engineering 2024, 1, 159-169. [pdf]
58. Ye, S.; Senftle, T.P.; Li, M.*, “Operator-induced structural variable selection with applications to materials genomes.” Journal of the American Statistical Association 2024, 119 (545), 81-94. [pdf]
2023
57. Wong, M. S.*, Lin, W.; Senftle, T. P. “Advancing environmental research through computational modeling.” ACS ES&T Engineering 2024, 4, 1, 1-3. [pdf]
56. Sanchez-Alvardo, A. B.; Zhou, J.; Jin, P.; Naumann, O.; Senftle, T. P.; Nordlander, P.; Halas, N. J.* “Combined surface-enhanced Raman and infrared absorption spectroscopies for streamlined chemical detection of polycyclic aromatic hydrocarbon-derived compounds.” ACS Nano 2023, 17, 24, 25697-25706. [pdf]
55. Kim, T.; Sellers, C.; Senftle, T. P.*; Wang, H.*, “CO2 and CO electroreduction do not yield the same multi-carbon products under practical reaction conditions.” Nature Catalysis 2023, 6 (12), 1115-1124. [pdf]
54. Sellers, C.; Senftle T. P.*, “Ammonia synthesis takes NO for an answer.” Nature Energy 2023, 8, 1184-1185. [pdf]
53. Denison, S. B.; Jin, P.; Da Silva, P. D.; Chu, C.; Moorthy, B.; Senftle, T. P.; Zygourakis, K.*; Alvarez, P.*, “Pyro-catalytic degradation of pyrene by bentonite-supported transition metals: Mechanistic insights and trade-offs with low pyrolysis temperature.” Environmental Science and Technology 2023 57 (38), 14373-14383. [pdf]
52. Wang, M.; Wang, P.; Zhang, G.*; Chen, Z.; Zhang, M.; Liu, Y.; Li, R.; Zhu, J.; Wang, J.; Bian, K.; Liu, Y.; Ding, F.; Senftle, T. P.*; Nie, X.; Fu, Q.; Song, C.*; Guo, X.*, “Stabilizing Co2C with H2O and K promoter for CO hydrogenation to C hydrocarbons.” Science Advances 2023, 9 (24), eadg0167. [pdf]
51. Zhu, D.; Zhu, Y.; Chen, Y.; Yan, Q.; Wu, H.; Liu, C-. Y.; Wang, X.; Alemany, L. B.; Gao, G.; Senftle, T. P.; Peng, Y.; Wu, X.*; Verduzco, R.*, “Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers.” Nature Communications 2023 14 (1), 2865. [pdf]
50. Rehn, S. M.; Gerrard-Anderson, T. M.; Chen, Y.; Wang, P.; Robertson, T.; Senftle, T. P.; Jones, M. R.*, “Surface ligands dictate the mechanical properties of inorganic nanomaterials.” ACS Nano 2023, 17 (7), 6698–6707. [pdf]
49. Bhati, M.; Ivanov, S. A.; Senftle, T. P.; Tretiak, S.*; Ghosh, D.*, “How structural and vibrational features affect optoelectronic properties of non-stoichiometric quantum dots: computational insights.” Nanoscale 2023, 15, 7176-7185. [pdf]
48. Lim, J.; Chen, Y.; Cullen, D.; Lee, S. W.; Senftle, T. P.*; Hatzell, M.*, “PdCu electrocatalysts for selective nitrate and nitrite reduction to nitrogen.” ACS Catalysis 2023, 13 (1), 87-98. [pdf]
2022
47. Duan, L.; Wang, B.; Heck, K. N.; Clark, C. A.; Wei, J.; Wang, M.; Metz, J.; Wu, G.; Tsai, A.-L.; Guo, S.; Arredondo, J.; Mohite, A. D.; Senftle, T. P.; Westerhoff, P.; Alvarez, P.; Wen, X.; Song, Y.*; Wong, M. S.*, “Titanium oxide improves boron nitride photocatalytic degradation of perfluorooctanoic acid.” Chemical Engineering Journal 2022, 448, 137735. [pdf]
46. Carrón-Calle, G.; Senftle, T. P., Garcia-Segura, S.*, “Strategic tailored design of electrocatalysts for environmental remediation based on density functional theory (DFT) and microkinetic modelling.” Current Opinion in Electrochemistry 2022, 35, 101062. [pdf]
45. Chen, Y.; Bhati, M.; Walls, B. W.; Wang, B.; Wong, M. S.; Senftle, T. P.*, “Mechanistic insight into the photo-oxidation of perfluorocarboxylic acid over hexagonal boron nitride.” Environmental Science and Technology 2022, 56 (12), 8942-8952. [pdf]
44. Liu, C-. Y.; Senftle, T. P.*, “Finding physical insights in catalysis with machine learning.” Current Opinion in Chemical Engineering 2022, 37, 100832. [pdf]
43. Lyu, Y.; Wang, P.; Liu, D.; Zhang, F.; Senftle, T. P.*; Zhang, G.; Zhang, Z.*; Wang, J.; Liu, W.*, “Tracing the active phase and dynamics for carbon nanofiber growth on nickel catalyst using environmental transmission electron microscopy.” Small Methods 2022, 6, 2200235. [pdf]
42. Liu, C-. Y.; Ye, S.; Li, M.*; Senftle, T.P.*, “A rapid feature selection method for catalyst design: Iterative Bayesian additive regression trees (iBART)” Journal of Chemical Physics 2022, 156, 164105. [pdf]
41. Bhati, M.; Ivanov, S. A.; Senftle, T. P.; Tretiak, S.*; Ghosh, D.* “Nature of electronic excitations in non-stoichiometric quantum dots.” Journal of Materials Chemistry A 2022 10, 5212-5220. (Cover Page) [pdf]
40. Zhu, J.; Wang, P.; Zhang, X.; Zhang, G.*; Li, R.; Li. W.; Senftle, T. P.; Liu, W.; Wang, J.; Wang, Y.; Zhang, A.; Fu, Q.; Song, C.; Guo, X.* “Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation.” Science Advances 2022, 8 (5), abm3629. [pdf]
39. Fan, L.; Liu, C-. Y.; Zhu, P.; Xia, C.; Zhang, X.; Wu, Z-. Y.; Lu, Y.*; Senftle, T. P.*; Wang, H.* “Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products.” Joule 2022, 6, 1, 205-220. [pdf]
2021
38. Zhu, Y.; Zhu, D.; Chen, Y.; Yan, Q.; Liu, C-. Y.; Ling, K.; Liu, Y.; Lee, D.; Wu, X.*, Senftle, T. P.*, Verduzco, R.* “Porphyrin-based donor–acceptor COFs as efficient and reusable photocatalysts for PET-RAFT polymerization under broad spectrum excitation.” Chemical Science 2021, 12, 16092-16099. [pdf]
37. Long, M.; Elias, W. C.; Heck, K. N.; Luo, Y-. H.; Lai, Y. S.; Jin, Y.; Gu, H.; Donoso, J.; Senftle, T. P.; Zhou, C.*; Wong, M. S.; Rittmann, B. E. “Hydrodefluorination of perfluorooctanoic acid in the H2-based membrane catalyst-film reactor with platinum group metal nanoparticles: Pathways and optimal conditions.” Environmental Science and Technology 2021, 55, 24, 16699-16707. [pdf]
36. Long, M.; Donoso, J.; Bhati, M.; Elias, W. C.; Heck, K. N.; Luo, Y-. H.; Lai, Y. S.; Gu, H.; Senftle, T. P.; Zhou, C.*; Wong, M. S.; Rittmann, B. E. “Adsorption and reductive defluorination of perfluorooctanoic acid (PFOA) over palladium nanoparticles.” Environmental Science and Technology 2021, 55 (21), 14836–14843. [pdf]
35. Wang, P.; Senftle, T. P.* “Modeling phase formation on catalyst surfaces: Coke formation and suppression in hydrocarbon environments.” AICHE Journal 2021, 67 (12), e17454. (Invited for Special Issue: AICHE Futures) [pdf]
34. Bhati, M.; Nguyen, Q. A.; Biswal, S. L.; Senftle, T. P.* “Combining ReaxFF simulation and experiment to evaluate the structure-property characteristics of polymeric binders in Si-based Li-ion batteries.” ACS Applied Materials and Interfaces 2021, 13 (35), 41956–41967. [pdf]
33. Lim, J.; Liu, C-. Y.; Park, J.; Liu, Y-. H.; Senftle, T. P.*; Lee, S. W.*; Hatzell, M. C.* “Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia.” ACS Catalysis 2021, 11, 12, 7568–7577. [pdf]
32. Zhu, P.; Xia, C., Liu, C-. Y.; Jiang, K.; Gao, G.; Zhang, X.; Xia, Y.; Lei, Y.; Alshareef, H. N.; Senftle, T. P.*; Wang, H.* “Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction.” Proceedings of the National Academy of Sciences 2021, 118 (2), e2010868118. (Rice media coverage) [pdf]
31. Wang, P.; Senftle, T. P.* “Theoretical insights into non-oxidative propane dehydrogenation over Fe3C.” Physical Chemistry Chemical Physics 2021, 23, 2, 1401-1413. [pdf]
2020
30. Bhati, M.; Chen, Y.; Senftle, T. P.* “Density functional theory modeling of photo-electrochemical reactions on semiconductors: H2 evolution on 3C-SiC.” Journal of Physical Chemistry C 2020, 124, 49, 26625. [pdf]
29. Liu, C.-Y.; Zhang, S.; Martinez, D.; Li, M.*; Senftle, T. P.* Using Statistical Learning to Predict Interactions between Single Metal Atoms and Modified MgO(100) Supports. npj Computational Materials 2020, 6, 102. [pdf]
28. Duan, L.; Wang, B.; Heck, K.; Guo, S.; Clark, C. A.; Arredondo, J.; Wang, M.; Senftle, T. P.; Westerhoff, P.; Wen, X.; Song, Y.; Wong, M.S.* “Efficient Photocatalytic PFOA Degradation over Boron Nitride.” Environmental Science and Technology Letters 2020, 7, 8, 613. (Rice media coverage) [pdf]
27. Wang, J.; Liu, C-. Y.; Senftle, T. P.; Zhu, J.; Zhang, G.*; Guo, X.*; Song, C.* “Variation in In2O3 Crystal Phase Alters Catalytic Performance toward the Reverse Water Gas Shift Reaction.” ACS Catalysis 2020, 10, 5, 3264. (Cover Page) [pdf]
26. Clark, C. A., Reddy, C. P.; Xu, H.; Heck, K. N.; Luo, G.; Senftle, T. P.*; Wong, M. S.* “Mechanistic Insights into pH-Controlled Nitrite Reduction to Ammonia and Hydrazine over Rhodium.” ACS Catalysis 2020, 10, 1, 494. (Rice media coverage) [pdf]
2019
25. Bhati, M.; Senftle, T. P.* “Identifying Adhesion Properties at Si/Polymer Interfaces with ReaxFF.” Journal of Physical Chemistry C, 2019, 123, 27036. [pdf]
2018
24. O’Connor, N. J.; Jonayat, A. S. M.; Janik, M. J.*; Senftle, T. P.* “Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning.” Nature Catalysis 2018, 1, 531. (Rice media coverage) [pdf]
23. Gautam, S. G.; Senftle, T. P.; Alidoust, N.; Carter, E. A.*”Novel solar cell materials: insights from first-principles.” Journal of Physical Chemistry C, 2018, 122, 27107. (Feature Article) [pdf]
22. Gautam, S. G.; Senftle, T. P.; Carter, E. A.* “Understanding the Effects of Cd and Ag Doping in Cu2ZnSnS4 Solar Cells.” Chemistry of Materials 2018, 30, 4543. [pdf]
21. Lessio, M.; Senftle, T. P.; Carter, E. A.* “Hydride Shuttle Formation and Reaction with CO2 on GaP(110).” ChemSusChem 2018, 11, 1588. [pdf]
2010 – 2017
20. Senftle, T. P.; Lessio, M.; Carter, E. A.* “Role of surface-bound dihydropyridine analogues in pyridine-catalyzed CO2 reduction over semiconductor photoelectrodes.” ACS Central Science 2017, 3, 968. [pdf]
19. Senftle, T. P.; Carter, E. A.* “Theoretical Determination of Band Edge Alignments at the Water–CuInS2(112) Semiconductor Interface.” Langmuir 2017, 33, 9479. [pdf]
18. Senftle, T. P.; Carter, E. A.* “The Holy Grail: Chemistry enabling an economically viable CO2 capture, utilization, and storage strategy.” Accounts of Chemical Research 2017, 50, 472. [pdf]
17. Fantauzzi, D.; Krick Calderón, S.; Mueller, J. E.; Grabau, M.; Papp, C.; Steinrück, H.-P.; Senftle, T. P.; van Duin, A. C. T.; Jacob, T.* “Growth of stable surface oxides on Pt(111) at near-ambient pressures.” Angewandte Chemie International Edition 2017, 56, 2594. [pdf]
16. Senftle, T. P.; van Duin, A. C. T.; Janik, M. J.* “Methane activation at the Pd/CeO2 interface.” ACS Catalysis 2016, 7 (1), 327. [pdf]
15. Senftle, T. P.; Lessio, M.; Carter, E.A.* “Interaction of pyridine and water with the reconstructed surfaces of GaP(111) and CdTe(111) photoelectrodes: Implications for CO2 reduction.” Chemistry of Materials 2016, 28 (16), 5799. [pdf]
14. Lessio, M.; Senftle, T. P.; Carter, E.A.* “Is the surface playing a role during pyridine-catalyzed CO2 reduction on p-GaP photo-electrodes?” ACS Energy Letters 2016, 1, 464. [pdf]
13. Senftle, T. P.; Hong, S.; Islam, M. M.; Kylasa, S. B.; Zheng, Y.; Shin, Y. K.; Junkermeier, C.; Engel-Herbert, R.; Janik, M. J.; Aktulga, H. M.; Verstraelen, T.; Grama, A.; van Duin, A. C. T.* “The ReaxFF reactive force-field: development, applications and future directions.” npj Computational Materials 2016, 2, 15011. [pdf]
12. Senftle, T. P.; van Duin, A. C. T.; Janik, M. J.* “Role of site stability in describing methane activation on PdxCe1-xOδ.” ACS Catalysis 2015, 5 (10), 6187. [pdf]
11. Strayer, M. E.; Senftle, T. P.; Winterstein, J. P.; Vargas-Barbosa, N. M.; Sharma, R.; Janik, M. J.; Mallouk, T. E., “Charge transfer stabilization of late transition metal oxide nanoparticles on a layered niobate support.” Journal of the American Chemical Society 2015, 137 (51), 16216. [pdf]
10. Tavazza, F.; Senftle, T. P.; Zou, C.; Becker, C. A.; van Duin, A. C. T.* “Molecular dynamics investigation of the effects of tip-substrate interactions during nanoindentation.” Journal of Physical Chemistry C 2015, 119 (24), 13580. [pdf]
9. Senftle, T. P.; Janik, M. J.; van Duin, A. C. T.* “A ReaxFF Investigation of hydride formation in Pd nanoclusters via Monte Carlo and molecular dynamics simulations.” Journal of Physical Chemistry C 2014, 118 (9), 4967. [pdf]
8. Addou, R.; Senftle, T. P.; O’Connor, N.; Janik, M. J.; van Duin, A. C. T.; Batzill, M.* “Influence of hydroxyls on Pd atom mobility and clustering on rutile TiO2(011)-(2×1).” ACS Nano 2014, 8 (6), 6321. [pdf]
7. Spanjers, C. S.; Senftle, T. P.; van Duin, A. C. T.; Janik, M. J.; Frenkel, A. I.; Rioux, R. M., “Illuminating surface atoms in nanoclusters by differential X-ray absorption spectroscopy.” Physical Chemistry Chemical Physics 2014, 16 (48), 26528. [pdf]
6. Senftle, T. P.; van Duin, A. C. T.; Janik, M. J.* “Application of computational methods to supported metal-oxide catalysis.” Computational Catalysis 2014, Royal Society of Chemistry, 157. (Book Chapter) [pdf]
5. Senftle, T. P.; Meyer, R. J.; Janik, M. J.; van Duin, A. C. T.* “Development of a ReaxFF potential for Pd/O and application to palladium oxide formation.” Journal of Chemical Physics 2013, 139 (4), 044109. [pdf]
4. Senftle, T. P.; van Duin, A. C. T.; Janik, M. J.* “Determining in situ phases of a nanoparticle catalyst via grand canonical Monte Carlo simulations with the ReaxFF potential.” Catalysis Communications 2013, 52 (0), 72. [pdf]
3. Wu, C.; Senftle, T. P.; Schneider, W. F.* “First-principles-guided design of ionic liquids for CO2 capture.” Physical Chemistry Chemical Physics 2012, 14 (38), 13163. [pdf]
2. Hudgens, J. W.*; Pettibone, J. M.; Senftle, T. P.; Bratton, R. N. “Reaction mechanism governing formation of 1,3-Bis(diphenylphosphino)propane-protected gold nanoclusters.” Inorganic Chemistry 2011, 50 (20), 10178. [pdf]
1. Gurkan, B.; Goodrich, B. F.; Mindrup, E. M.; Ficke, L. E.; Massel, M.; Seo, S.; Senftle, T. P.; Wu, H.; Glaser, M. F.; Shah, J. K.; Maginn, E. J.; Brennecke, J. F.; Schneider, W. F.* “Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture.” Journal of Physical Chemistry Letters 2010, 1 (24), 3494. [pdf]