

Letter

Methane Activation at the Pd/CeO₂ Interface

Thomas P. Senftle,[†] Adri C. T. van Duin,^{*,†,‡} and Michael J. Janik^{*,† \square}

[†]Department of Chemical Engineering, Pennsylvania State University, 140 Fenske Laboratory, University Park, Pennsylvania 16802, United States

[‡]Department Mechanical and Aerospace Engineering, Pennsylvania State University, 240 Research East Building, University Park, Pennsylvania 16802, United States

Supporting Information

ABSTRACT: We combine density functional theory (DFT) and reactive forcefield (ReaxFF) simulations to assess the stability and activity of unique catalytic sites at the interface between Pd clusters and a CeO₂ support. ReaxFF-based Grand Canonical Monte Carlo (GC-MC) simulations provide insight into the oxide structure at the Pd/CeO₂ interface. Surface models derived with GC-MC are employed in reactive molecular dynamics (RMD) simulations, which demonstrate that methane lightoff rapidly occurs when there is Pd mixing in the CeO₂ lattice. DFT investigations, utilizing models inspired by GC-MC/RMD, demonstrate that Pd⁴⁺ states are stabilized in PdO_x clusters partially embedded in the CeO₂ lattice, and that such sites yield low methane activation barriers.

The integrated DFT/ReaxFF methodology employed here demonstrates a combined quantum/classical workflow that can be extended to examine emergent behavior in other oxide-supported metal catalysts.

KEYWORDS: ReaxFF, DFT, methane, palladium, ceria

ffective methane conversion—specifically the ability to activate C–H bonds at low temperatures—is essential for the efficient use of abundant natural gas resources and for the abatement of greenhouse gas emissions.¹ Numerous studies point to a synergistic interaction at the Pd/CeO₂ interface, leading to rapid catalytic turnover at temperatures lower than those achieved over any other known heterogeneous catalysts. Colussi et al.²⁻⁴ demonstrated that the incorporation of Pd atoms in the CeO₂ lattice via solution combustion synthesis yields increased methane oxidation rates, compared to Pd/ CeO₂ catalysts prepared by incipient wetness impregnation (IWI). Similarly, Cargnello et al.⁵ prepared core-shell Pd@ CeO₂ catalysts that displayed exceptional methane combustion rates, relative to typical IWI analogues. Reports have also demonstrated^{6,7} that CO oxidation rates over Pd/CeO₂ scale proportionally with the number of sites on the contact line between the Pd cluster and the CeO₂ support. Recently, our group demonstrated that there is a tradeoff between stability and activity during methane activation over Pd⁴⁺ surface states, in which the incorporation of Pd in the CeO₂ lattice yields transient and active Pd4+ states.8 This corroborates experimental characterizations by Farrauto et al.⁹ and Nilsson et al.,¹⁰ showing that PdO_x formation occurs more readily on CeO_2 compared to other supports. Together, these results suggest that CeO₂ promotes the oxidation of Pd, which serves as the active phase for catalytic oxidation reactions.

Atomistic details of the active metal/support interfacial site remain elusive, which provides motivation for the use of a combined quantum/classical computational workflow to investigate morphology and activity at the Pd/CeO₂ interface (Figure 1). Here, we apply the empirical ReaxFF^{11,12} reactive

force-field method in tandem with density functional theory (DFT) to assess the formation of mixed Pd–Ce oxide phases. Our results demonstrate that interaction with the CeO₂ support stabilizes transient Pd⁴⁺ states under conditions typical for low-temperature methane combustion. The interaction between Pd and CeO₂ thus creates active sites for methane dissociation that emerge from the multicomponent cluster/support interface. The nature of this interaction is closely related to other metal/ CeO₂ systems in which the incorporation of single metal atoms in the CeO₂ lattice is linked to high catalytic activity (e.g., Pt/ CeO₂¹³).

To model oxide formation in CeO₂-supported Pd clusters, we employ a recently developed Grand Canonical Monte Carlo (GC-MC) approach for ReaxFF.¹⁴ This approach builds on a previously developed¹⁵ ReaxFF MC/MD methodology for exploring complex mixed-oxide structures, extending the method to account for a reactive gas-phase environment. Atomistic interactions are described with available Pd/O,¹⁴ Pd/ C/H,^{16,17} and Ce/O¹⁸ parameter sets. The Pd/O/C/H parameter set is provided in the Supporting Information in ReaxFF input format, and the Ce/O parameter set can be obtained by contacting the corresponding author of ref 18. Additional data regarding the fitting procedure for Pd/Ce/O cross terms developed for this study are provided in the Supporting Information. GC-MC simulations were conducted at varying pressures, where MC moves included the insertion,

Received: August 26, 2016 Revised: November 29, 2016 Published: December 7, 2016

Figure 1. Combined DFT/ReaxFF workflow for investigating the stability and activity of an oxide-supported metal catalyst.

deletion, and translation of O atoms in the Pd cluster on an offlattice basis (i.e., without predefined insertion sites). The effect of the CeO_2 support on PdO_x formation was assessed using both supported and partially embedded Pd cluster models. The Pd cluster model, motivated by high-resolution transmission electron microscopy (HRTEM) results reported by Cargnello et al.,⁶ consists of an \sim 15 Å icosahedron cluster that is halved at the center, yielding a (100) surface termination along the basal plane of the cluster. In the supported model, this cluster is placed on a $CeO_2(111)$ surface consisting of three O-Ce-O trilayers in a periodic unit cell with dimensions of 39.8 Å \times 33.9 $Å \times 75.0$ Å. In simulations approximating a partially embedded cluster at a roughened Pd/CeO₂ interface, the first O-Ce-O trilayer directly beneath the Pd cluster was removed and the cluster was lowered into the resulting void space. The MC algorithm includes a geometry optimization step at each iteration, allowing the supported and embedded models to structurally relax as the MC run equilibrates (Figure 2a). This is evident in the structures of the supported (Figure 2b) and embedded (Figure 2c) clusters after GC-MC equilibration at a temperature of T = 500 K and an oxygen pressure of $P_{O_2} = 1$ atm.

After GC-MC equilibration, there is distinct Pd mixing into the CeO₂ lattice at the edge of the embedded cluster, where Pd atoms migrate toward open lattice positions created by CeO₂ defects (Figure 2c). This behavior is not evident when the Pd cluster is supported on the pristine CeO₂(111) surface (Figure 2b). Additional simulations were conducted at oxygen pressures ranging from 10^{-20} atm to 1 atm at 500 K, which encompass conditions for low-temperature combustion. Higher O:Pd ratios are achieved in embedded Pd clusters at all investigated pressures (Figure 2a). This corroborates our recent DFT study,⁸ which found that oxidized Pd⁴⁺ states are stabilized by Pd incorporation in the CeO₂ lattice, and this observation supports the experimental findings of Farrauto et al.⁹ and Nilsson et al.,¹⁰ demonstrating that CeO₂ enhances PdO_x formation. The simulations reveal that Pd atoms at the cluster/support interface migrate away from the Pd cluster to assume a higher oxygen coordination offered by defect sites in the CeO₂ lattice. Therefore, incorporation will occur readily as Pd atoms and small clusters diffuse across the CeO₂ surface and encounter step, vacancy, or boundary defects.

The equilibrated GC-MC structures obtained here serve as surface models for subsequent reactive molecular dynamics (RMD) simulations of methane activation, as they approximate the thermodynamically stable surface morphology under reaction conditions. We employed RMD simulations of methane activation to assess relative activation rates over varying cluster/support interfacial morphologies. A temperature-programmed RMD scheme was used to simulate methane lightoff, where 30 CH₄ molecules were placed randomly in the simulation box above the surface (trajectory videos and coordinates are provided in the Supporting Information). Note that no O_2 molecules are included in the gas phase, as it assumed that the surface has already been equilibrated with the O₂ environment via the GC-MC simulations used to derive the initial geometries. To simulate light-off behavior, the system thermostat was ramped from 750 K to 1750 K over the course of the 50 ps simulation. To monitor methane activation, populations of molecular species were recorded at 25 fs intervals (Figure 3). Methane activation at \sim 1440 K is marked by a sharp decrease in the number of gas phase CH₄ molecules

Figure 2. (a) GC-MC simulations of oxygen uptake in supported and embedded Pd clusters on the $CeO_2(111)$ surface at 500 K, where denoted pressures correspond to the partial pressure of the oxygen reservoir. Odd- and even-numbered datasets correspond to embedded and supported cluster models, respectively. Lines correspond to MC trial attempts and data points correspond to accepted MC moves. (b, c) Equilibrated structures of the supported PdO_x clusters (panel (b)) and embedded PdO_x clusters (panel (c)) after GC-MC simulation of oxygen uptake at T = 500 K and $P_{O_x} = 1$ atm.

accompanied by an increase in adsorbed H atoms, indicating dissociative methane adsorption (Figure 3a). Partial combustion products (such as CHO, CH₂O, and CO) appear on the surface as intermediate species, along with total combustion products $(H_2O \text{ and } CO_2)$ appearing in the gas phase. Figure 3b compares methane lightoff over Pd and PdO_x clusters that are both supported on and embedded in the CeO₂ lattice. Control simulations over pristine $CeO_2(111)$ resulted in no CH_4 activation events. Methane activation occurs more readily over the supported metallic cluster, compared to the embedded cluster, where C-H activation occurs at undercoordinated Pd atoms near the edges of the cluster. Such sites are less accessible to CH₄ in the embedded model, leading to slower methane activation. This trend is reversed over the oxidized clusters, where embedded PdO_x achieves faster activation compared to the supported cluster. Since the number of exposed edge sites decreases when the cluster is embedded, enhanced activation over embedded PdO_x must reflect uniquely active sites created by PdO_r/CeO_2 mixing at the interface (Figure 3c).

The functional form of the ReaxFF potential couples bond order and charge transfer formalisms, which enables the potential to describe covalent, ionic, and mixed covalent/ ionic interactions that often occur in supported metal/metaloxide catalysts. The ability of ReaxFF to describe both covalent and Coulombic interactions makes the potential well-suited for describing the formation of mixed-oxide phases, as has been demonstrated in numerous successful studies that have

Figure 3. (a) RMD simulation of methane lightoff over an embedded PdO_x cluster (model derived with GC-MC at T = 500 K and $P_{O_2} = 1$ atm). (b) Simulated methane light-off curves comparing supported and embedded cluster models. PdO_x models were derived from equilibrated GC-MC simulations at T = 500 K and $P_{O_2} = 1$ atm, and Pd models were derived from MD simulations equilibrated at T = 500 K in the absence of CH₄. (c) RMD snapshot at methane activation lightoff (pink arrow) over the embedded PdO_x cluster model in panel (a).

employed ReaxFF to investigate multimetal oxides (see, e.g., the work of Chenoweth et al.¹⁵). The performance of the ReaxFF parameters derived in this work (described in Section 4 in the SI) demonstrate that the potential correctly captures the metastable (and, therefore, reactive) nature of highly oxidized Pd states that form when Pd is mixed into the CeO_2 lattice (i.e., Pd incorporation at a Ce lattice site of the fluorite CeO₂ structure results in a PdO_2 octahedral unit that is reactive because the central Pd is overcoordinated). Increased activity attributed to the Pd/CeO₂ interaction is, in this case, adequately described by the bond order formalism of ReaxFF, as the relative stability of PdO and PdO₂ units is captured by the energy difference between square planar and octahedral oxygen environments around a Pd center. Although reliable for energetics, ReaxFF is unable to explicitly describe electron transfers, and, for this reason alone, is not sufficient for assessing the electronic nature of metal-support interactions. Therefore, we must use ReaxFF in tandem with electronic structure calculations to unravel concomitant effects at both the electronic and atomistic levels.

To complement the above ReaxFF results, we performed DFT calculations, in conjunction with *ab initio* thermodynamics, to assess the stability and activity of PdO_x formations at

the interface of partially embedded clusters (Figure 4a). DFT calculations were completed with the Vienna ab initio

Figure 4. (a) *Ab initio* phase diagram of Pd oxidation states in the $Pd_7O_x/Ce_{33}O_{66}(111)$ model. The solid shaded regions separated by solid lines indicate stable regions in (T,P) space. The striped region and dashed line indicate the region where the supported Pd_7O_8 cluster is thermodynamically stable, yet methane activation is kinetically preferred over the Pd_7O_9 cluster. (b, c) DFT optimized structure of the embedded $Pd_7O_9/Ce_{33}O_{66}(111)$ cluster model (panel (b)) and the $Pd_7O_8/Ce_{33}O_{66}(111)$ cluster model (panel (c)). A cross-sectional view of each model is shown on the right, with the first CeO₂ trilayer omitted for the sake of clarity. Hydrogen abstraction sites during methane activation are indicated by arrows.

simulation package (VASP 5.3.3; computational details are provided in the Supporting Information).¹⁹ Our previous investigation of $Pd_xCe_{1-x}O_{\delta}$ single-crystal surfaces demonstrated that Pd^{2+} incorporated states are thermodynamically favored under ambient conditions.⁸ However, the study also indicated that transient Pd^{4+} states exist during operation, and that such states can offer low methane activation barriers. Here, we extend the $Pd_3Ce_{33}O_{69}(111)$ surface model from that study, which has three Pd^{2+} atoms incorporated in the CeO₂ lattice, to approximate oxide formation in a partially embedded cluster. This is accomplished by placing a Pd_4O_4 cluster in the void space created by oxygen vacancies in the $Pd_3Ce_{33}O_{69}(111)$ surface, thus yielding overall an embedded Pd₇O₇ cluster with exclusively Pd²⁺ oxidation states. Models with Pd⁴⁺ states are derived by successively adding O atoms on high-symmetry sites of the embedded Pd₇O₇ structure (coordinates of all structures are provided in the Supporting Information). The Pd₇O₈ model was obtained by adding the oxygen atom O2 to the Pd₇O₇ model, and the Pd₇O₉ model was obtained by adding oxygen atom O1 to the Pd_7O_8 model (see Figures 4b and 4c). The optimized PdO_x structures demonstrate a clear tendency for Pd to form square-planar units similar to those found in bulk $P4_2/$ mmc PdO. This suggests that embedding Pd in CeO_2 may aid the formation of small PdO_x clusters, as the reduced fluorite lattice provides square-planar coordination sites for incorporated Pd atoms. This notion is further quantified using ab initio thermodynamics to assess the relative stability of supported Pd₇O_x clusters, as a function of temperature and oxygen pressure. The resulting ab initio phase diagram demonstrates that partially embedded Pd_7O_x clusters with x > 7 (i.e., clusters with Pd⁴⁺ states) are stable under catalytic combustion conditions (Figure 4a). At 500 K, Pd_7O_x clusters with x > 7are thermodynamically stable at all oxygen pressures above $\sim 10^{-15}$ atm, where the same calculation method demonstrated previously²⁰ that bulk $P4_2/mnm$ PdO₂ (i.e., all Pd⁴⁺ states) is less stable than bulk PdO (i.e., all Pd²⁺ states) below oxygen pressures of $\sim 10^{10}$ atm at 500 K. This indicates that CeO₂ enhances oxide formation in embedded Pd clusters, in agreement with the work of Farrauto et al.9 and Nilsson et al.,¹⁰ allowing Pd⁴⁺ to be an accessible state under conditions far less oxidizing than what would be required over non-CeO₂ supports.

To assess the activity of sites at the $Pd_7O_r/Ce_{33}O_{66}(111)$ interface, we use a previously validated^{8,21,22} pseudo-barrier approach to calculate the apparent free energy of activation via hydrogen abstraction from gas phase CH₄ (this approach is further described in the Supporting Information). The favored hydrogen abstraction site during methane activation over the Pd₇O₈ and Pd₇O₉ surface models, indicated by arrows in Figure 4, resides over O atoms in Ce-O-Pd units at the cluster/ support interface. At T = 500 K and $P_{O_2} = 0.01$ atm, the Pd₇O₉ surface is less stable than the Pd₇O₈ surface, and therefore, the apparent barrier over the Pd₇O₉ surface consists of the barrier to activate methane summed with the free-energy difference between the Pd₇O₉ and Pd₇O₈ models. This defines a kinetic region in the phase diagram, where the Pd₇O₈ state is thermodynamically stable yet methane activation proceeds through an initial oxidation step, followed by reduction by C-H dissociation. The kinetic region in the figure results from a tradeoff between stability and activity, where a metastable Pd⁴⁺ state offers a faster activation path, compared to direct activation on the more stable Pd²⁺ state. This analysis is extended to calculate apparent barriers for all $Pd_7O_r/$ $Ce_{33}O_{66}(111)$ models (see Table 1). The apparent barrier and relative rate over the embedded Pd7O9 model is commensurate with highly active $Pd_3Ce_{33}O_{69}(111)^8$ and $PdO(101)^{23}$ surfaces.

To further examine the nature of active sites at the cluster/ support interface, we conducted a Bader charge^{24,25} analysis of the active sites on the Pd_7O_8 and Pd_7O_9 cluster models (Tables S5 and S6 in the Supporting Information), and we analyzed the distribution of excess spin density after the surface was reduced by the adsorption of a H atom during methane activation (see Figure S3 in the Supporting Information). On the Pd_7O_8

Table 1. Methane Activation Barriers (eV) and Relative Rates^a

surface site	$\Delta G_{\rm act}$ (0 K)	$\Delta G_{\rm act}$ (550 K)	$\Delta G_{\rm form}$ (550 K)	$\Delta G_{\rm app}$ (550 K)	relative rate
$CeO_2(111)^{21}$	1.65	2.84		2.84	1
$PdO(101)^{22}$	0.50	1.69		1.69	3.4×10^{10}
Pd ₃ Ce ₃₃ O ₇₂ (111) ⁸	0.43	1.61	2.52	4.13	1.4×10^{-12}
$Pd_{3}Ce_{33}O_{71}(111)^{8}$	0.39	1.57	0.99	2.57	3.1×10^{2}
$Pd_{3}Ce_{33}O_{70}(111)^{8}$	0.29	1.48	0.31	1.79	4.3×10^{9}
$Pd_{3}Ce_{33}O_{69}(111)^{8}$	0.68	1.87		1.87	7.7×10^{8}
Pd ₇ O ₇ /Ce ₃₃ O ₆₆ (111)	1.04	2.23	0.55	2.78	3.6×10^{0}
Pd ₇ O ₈ /Ce ₃₃ O ₆₆ (111)	1.08	2.27		2.27	1.6×10^{5}
Pd ₇ O ₉ /Ce ₃₃ O ₆₆ (111)	0.64	1.83	0.01	1.84	1.3×10^{9}
$Pd_7O_{10}/Ce_{33}O_{66}(111)$	0.52	1.71	0.98	2.69	2.3×10^{1}
^a Values calculated using the	following parameters: T	$r = 550$ K, $P_{O_2} = 0.01$ a	atm, and $P_{\rm CH_1} = 0.1$ atm.		

model, both the Bader charge and spin density analyses demonstrate that a Ce⁴⁺ site at the PdO_x/CeO₂ interface is reduced to Ce³⁺ upon hydrogen abstraction. These analyses reveal on the Pd₇O₉ model that the excess charge from the adsorbed hydrogen atom becomes delocalized across Pd atoms in the PdO_x cluster, and does not localize on an adjacent Ce atom. As such, increased O:Pd ratios stabilized by embedding PdO_x in the CeO₂ lattice lead to highly oxidized Pd atom centers that are readily reduced during methane activation at the interface. Hence, Pd²⁺ is the thermodynamically preferred oxidation state during operation, yet transient Pd⁴⁺ states can form during the CH₄ activation mechanism. Indeed, reduction of the Pd⁴⁺ state back to Pd²⁺ drives C–H bond activation, as demonstrated by the charge distribution in Figure S3 in the Supporting Information.

In this work, DFT and ReaxFF were used to assess thermodynamic and kinetic driving forces affecting activity at the Pd/CeO₂ interface. We found that the high methane conversion activity of PdO_x/CeO₂ arises from emergent mixed oxide chemistry at the cluster/support interface. Mixing of Pd into the CeO₂ lattice provides a coordination environment for Pd^{δ+} species that enable facile alternation between Pd²⁺ and Pd⁴⁺ oxidation states, thereby creating highly reducible sites ideal for methane activation. The combined use of ReaxFF and DFT allows for a robust study of cluster/support interactions that can elucidate catalyst/support collective behavior at a resolution that cannot be obtained through experiment or isolated computational approaches.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.6b02447.

DFT methodology and equations used to generate *ab initio* phase diagrams, coordinates of geometries involved in DFT calculations, description of ReaxFF parameter development, coordinates of equilibrated ReaxFF-GCMC structures, and coordinates/videos of ReaxFF-RMD trajectories (PDF)

ReaxFF force-field file for Pd/O/C/H (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: acv13@psu.edu (A. C. T. van Duin). *E-mail: mjj13@psu.edu (M. J. Janik).

E-mail: mjj15(apsu.edu (M. J. Jank)

ORCID ⁰

Michael J. Janik: 0000-0001-9975-0650

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by funding from the National Science Foundation (Grant No. CBET-1505607). The ReaxFF parameter sets employed in this work can be obtained by submitting a request to the Materials Computation Center (MCC) at Penn State via the Internet at https://www.mri.psu.edu/materials-computation-center/connect-mcc.

REFERENCES

(1) Farrauto, R. J. Science 2012, 337, 659-660.

(2) Colussi, S.; Gayen, A.; Farnesi Camellone, M.; Boaro, M.; Llorca, J.; Fabris, S.; Trovarelli, A. *Angew. Chem., Int. Ed.* **2009**, *48*, 8481–8484.

(3) Colussi, S.; Gayen, A.; Llorca, J.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. Ind. Eng. Chem. Res. 2012, 51, 7510–7517.

(4) Colussi, S.; Trovarelli, A.; Cristiani, C.; Lietti, L.; Groppi, G. *Catal. Today* **2012**, *180*, 124–130.

(5) Cargnello, M.; Jaén, J. J. D.; Garrido, J. C. H.; Bakhmutsky, K.; Montini, T.; Gámez, J. J. C.; Gorte, R. J.; Fornasiero, P. Science **2012**, 337, 713–717.

(6) Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. *Science* **2013**, 341, 771–773.

(7) Slavinskaya, E. M.; Kardash, T. Y.; Stonkus, O. A.; Gulyaev, R. V.; Lapin, I. N.; Svetlichnyi, V. A.; Boronin, A. I. *Catal. Sci. Technol.* **2016**, *6*, 6650–6666.

(8) Senftle, T. P.; van Duin, A. C. T.; Janik, M. J. ACS Catal. 2015, 5, 6187–6199.

(9) Farrauto, R. J.; Lampert, J. K.; Hobson, M. C.; Waterman, E. M. Appl. Catal, B 1995, 6, 263–270.

(10) Nilsson, J.; Carlsson, P.-A.; Fouladvand, S.; Martin, N. M.; Gustafson, J.; Newton, M. A.; Lundgren, E.; Grönbeck, H.; Skoglundh, M. ACS Catal. **2015**, *5*, 2481–2489.

(11) van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A., III. J. Phys. Chem. A **2001**, 105, 9396–9409.

(12) Senftle, T. P.; Hong, S.; Islam, M. M.; Kylasa, S. B.; Zheng, Y.; Shin, Y. K.; Junkermeier, C.; Engel-Herbert, R.; Janik, M. J.; Aktulga, H. M.; Verstraelen, T.; Grama, A.; van Duin, A. C. T. *npj Comput. Mater.* **2016**, *2*, 15011.

(13) Pilger, F.; Testino, A.; Carino, A.; Proff, C.; Kambolis, A.; Cervellino, A.; Ludwig, C. ACS Catal. **2016**, *6*, 3688–3699.

(14) Senftle, T. P.; Meyer, R. J.; Janik, M. J.; van Duin, A. C. T. J. Chem. Phys. 2013, 139, 044109-044115.

(15) Chenoweth, K.; van Duin, A. C. T.; Goddard, W. A. Angew. Chem., Int. Ed. 2009, 48, 7630–7634.

(16) Senftle, T. P.; van Duin, A. C. T.; Janik, M. J. Catal. Commun. 2014, 52, 72–77.

331

- (18) Broqvist, P.; Kullgren, J.; Wolf, M. J.; van Duin, A. C. T.; Hermansson, K. J. Phys. Chem. C 2015, 119, 13598-13609.
- (19) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. **1996**, 6, 15-50. (20) Mayernick, A. D.; Janik, M. J. J. Chem. Phys. **2009**, 131, 084701-084712.

(21) Krcha, M. D.; Mayernick, A. D.; Janik, M. J. J. Catal. 2012, 293, 103-115.

(22) Mayernick, A. D.; Janik, M. J. J. Catal. 2011, 278, 16-25.

(23) Hellman, A.; Resta, A.; Martin, N. M.; Gustafson, J.; Trinchero, A.; Carlsson, P. A.; Balmes, O.; Felici, R.; van Rijn, R.; Frenken, J. W. M.; Andersen, J. N.; Lundgren, E.; Grönbeck, H. *J. Phys. Chem. Lett.* **2012**, *3*, 678–682.

(24) Bader, R. F. W. Acc. Chem. Res. 1985, 18, 9-15.

(25) Henkelman, G.; Arnaldsson, A.; Jonsson, H. Comput. Mater. Sci. 2006, 36, 354–360.