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The stability and activity of supported metal catalysts can be 
significantly influenced by interactions between the metal and 
the support1,2. For single metal atom catalysts supported on 

metal-oxide surfaces, support interactions impact both the met-
al’s catalytic properties and its resistance to sintering3. The nature 
of active sites exposed on the metal surface can be affected by the 
size, shape and dispersion of the metal clusters1–3. Therefore, under-
standing metal–support interactions is essential for tuning the 
activity, selectivity and stability of oxide-supported metal catalysts. 
Despite the large number of studies investigating metal–support 
interactions1,2,4–10, trends that predict interaction strengths between 
metal–support pairs are relatively unexplored.

Sintering compromises the reactivity of a catalyst by reducing 
the available catalytic surface area7–9. Typically governed by Ostwald 
ripening11, sintering of metal catalyst particles has been shown to 
decrease the reactivity for a number of important reactions, includ-
ing the water-gas shift reaction, methane oxidation and the selective 
hydrogenation of nitroarenes12–14. However, single atoms anchored 
to supports can exhibit strong resistance to sintering, and make for 
longer-lasting, highly active catalysts8. The degree to which a metal 
is anchored to a support is governed by the metal atom’s binding 
energy—metals that exhibit strong exothermic binding to a support 
are less likely to diffuse across the support and agglomerate9.

Due to their influence over catalytic performance, strong metal–
support interactions (SMSIs) have been extensively studied15,16. 
Recently, SMSIs have taken on a new meaning4,7,17,18, with numerous 
studies investigating metal/oxide adsorption energies as a method 
for improving catalytic performance4,5,7–9,18–21. The activity and selec-
tivity of many metal/oxide systems are governed by effects linked 
to SMSIs1,2. Metal/oxide systems that can stabilize single-atom cata-
lysts (SACs) have proven to be effective in many applications22,23. 
The well-defined active site of a SAC system can also provide high 
selectivity if one can achieve well-controlled uniformity across the 
catalyst surface6. As such, the strength of metal interaction on an 

oxide support can significantly impact the overall stability and 
activity of the SAC.

Several notable studies have investigated SMSIs using both exper-
imental and computational techniques, most examining the interac-
tions between one particular metal–oxide pair19, and some studying 
trends across different metals5,8,20,21 and supports. Understanding 
such trends is critical for screening combinations of metals and 
supports that can work in conjunction to produce sinter-resistant 
catalysts. Considering their well-defined morphology as supported 
metal catalysts, SACs frequently serve as useful experimental model 
systems for studying SMSIs, even if the technologically relevant 
catalysts feature metal clusters as opposed to single atoms24. Density 
functional theory (DFT) has also proven to be a powerful tool for 
investigating the energetic properties of metal/oxide systems, and 
has complemented experimental efforts in many studies4,19,20.

Campbell et al.8 demonstrated that a metal adatom’s oxide for-
mation enthalpy can be used to effectively predict a metal’s adsorp-
tion energy to an oxide support—an approach that has been further 
validated in recent experimental and computational work20. They 
also suggested some correlation between a metal atom’s adsorption 
energy and a support’s oxide reduction energy10,25.

Herein, we expand these correlations for a range of early and 
late transition metals and oxide supports. We employ DFT to 
investigate the properties of single adatoms and oxide supports 
that influence SMSIs, and we investigate periodic trends and 
electronic interactions of metal/oxide systems. Finally, we anal-
yse different analytical forms of these properties using statistical 
learning based on least absolute shrinkage and selection opera-
tor (LASSO)26 regression, which is employed to identify physi-
cal descriptors that significantly influence metal/oxide binding 
energy. Based on this analysis, we propose predictor equations 
for metal/oxide binding energy by evaluating error predictions 
characteristic of all possible subsets of various analytical forms of 
descriptor combinations.
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Single-atom catalysts offer high reactivity and selectivity while maximizing utilization of the expensive active metal compo-
nent. However, they are susceptible to sintering, where single metal atoms agglomerate into thermodynamically stable clusters. 
Tuning the binding strength between single metal atoms and oxide supports is essential to prevent sintering. We apply den-
sity functional theory, together with a statistical learning approach based on least absolute shrinkage and selection operator 
regression, to identify property descriptors that predict interaction strengths between single metal atoms and oxide supports. 
Here, we show that interfacial binding is correlated with readily available physical properties of both the supported metal, such 
as oxophilicity measured by oxide formation energy, and the support, such as reducibility measured by oxygen vacancy forma-
tion energy. These properties can be used to empirically screen interaction strengths between metal–support pairs, thus aiding 
the design of single-atom catalysts that are robust against sintering.
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results
Trends in strong metal–support adsorption energies. A range of 
transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Mn and 
V) were adsorbed on several reducible and irreducible oxide sup-
ports (CeO2(111), MgO(100), CeO2(110), TbO2(111), ZnO(100), 
TiO2(011) and α -Al2O3(0001) surfaces) to investigate trends in metal 
adsorption energy among metals and supports. On each support 
surface, a single metal atom was adsorbed to several high-symmetry 
sites corresponding to energetically favourable configurations. For 
example, silver favourably adsorbs at a threefold hollow site (Fig. 
1a), consistent with previous DFT studies5, while iridium favour-
ably adsorbs to CeO2(111) at an oxygen bridge location (Fig. 1b).  
Conversely, all atoms adsorb above the anionic oxygen on the 
MgO(100) surface, which is a well-documented property of this 
surface27. The full range of adsorption sites and energies for each 
metal atom on all oxide surfaces are reported in Supplementary 
Table 1, and adsorbed configurations are shown in Supplementary 
Figs. 1–13. The adsorption sites for all previously studied metal/
oxide systems were validated against the existing literature where 
possible21,28–30. Specifications of DFT method and calculation proce-
dures for adsorption energies (ΔEads) are provided in the Methods.

Campbell and Sellers8 first proposed the correlation between 
the binding energy of metal nanoparticles on oxide supports and 
the oxide formation enthalpy (ΔHf,ox) of the metal adatoms. This 
descriptor determines the interaction strength between a gas-phase 
metal atom and oxygen, and is determined from experimental ref-
erence data, as explained in the Methods. This oxide formation 
enthalpy reflects the metal adatom’s affinity for oxygen and intui-
tively correlates with the metal’s interaction with oxide surfaces. 
Previous work by Hosokawa et al.31 has confirmed the presence of 
metal–oxygen–metal bonds formed during single-atom adsorption 
on oxides, demonstrating the importance of metal–oxygen interac-
tions that dictate metal adsorption. However, this descriptor is not 
independently sufficient to predict metal atom adsorption energy, in 
part due to possible metal–metal interactions between the adatom 
metal and the support metal (see below).

In Fig. 2, the adsorption energy of a metal onto an oxide surface 
is plotted against the adsorbed metal’s oxide formation enthalpy.  
A linear trend for each support suggests that the metal adatom’s 
interactions with surface oxygen atoms have a considerable effect 
on the strength of its interfacial bond to the oxide. Metals with a 
weaker affinity for oxygen, such as silver, bind to any oxide sig-
nificantly weaker than those with high oxygen affinity, such as 

vanadium. Thus, the oxide formation enthalpy of the metal is an 
effective predictor of that metal’s relative binding strength to an 
oxide support. The slopes, y intercepts, R2 values (coefficient of 
determination) and mean absolute errors corresponding to each 
oxide surface are reported in Supplementary Table 2. The R2 val-
ues confirm a reasonable degree of correlation for each support, 
except for MgO(100), which experiences a poor correlation because 
it binds all metals so weakly that oxidation enthalpy becomes a 
poor descriptor. The mean absolute error values range from 0.20 to 
0.68 eV and are higher for supports that bind metals more strongly, 
such as TbO2(111).

The trend of metal adsorption strength on each support surface 
is described by a unique slope, suggesting that characteristics of 
the support itself also play a role in determining the overall metal 
binding strength. Indeed, properties of oxide supports, such as 
nanocrystal shape and exposed facet, have been shown to strongly 
influence the catalytic activity of oxide-supported catalysts1,32. In 
particular, the reducibility of a support has been shown to affect the 
strength with which it adorbs metal atoms10,33. Support reducibil-
ity is quantified by the oxygen vacancy formation energy (ΔE vac) 
of the oxide (see Methods for the computation of ΔE vac). Typically, 
reducible supports with lower endothermic oxygen vacancy forma-
tion energies are formed from parent metals with unoccupied low-
energy states that can readily accept transferred electrons following 
the formation of an oxygen vacancy. The ability of the surface to 
accept donated electrons influences the adsorption of metal atoms, 
which in many cases have been shown to oxidize upon adsorption 
and, accordingly, reduce the metal atoms in the support itself34.

In Fig. 3, the slope of each surface’s trend line in Fig. 2 is correlated 
with the surface oxygen vacancy formation energies of each sup-
port. This reflects a general trend in which reducible supports (that 
is, supports with lower endothermic vacancy formation energies) 
tend to have a steep slope featuring more variation in metal atom 
binding across transition metals. The linear correlation in Fig. 2  
over a large range of oxygen vacancy formation energies indicates 
that the reducibility of each surface is a viable indicator that each 
support’s reducibility reflects its capacity to strongly adsorb metal 
atoms. MgO(100), an irreducible surface, does not interact strongly 
with silver or vanadium, which are the atoms with the lowest and 
highest oxide formation enthalpy, respectively. Thus, the slope of 
MgO(100) is much shallower than that of TbO2(111), the most 
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Fig. 1 | Adsorption geometries of metals on CeO2(111) and MgO(100). 
a–c, Top view of adsorbed late transition metals on the CeO2(111) surface 
at the threefold hollow site (Ag) (a), twofold oxygen bridge site (Ir) (b) 
and oxygen side-bridge site (Pd) (c). d, Adsorbed metals on MgO(100) all 
prefer the anionic oxygen site. The black rectangle represents the unit cell 
used in the study.
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Fig. 2 | Correlation between metal/support adsorption energies and metal 
adatom’s oxide formation enthalpy. Adsorption energies of transition 
metals on MgO(100), CeO2(111), CeO2(110), TiO2(011), ZnO(100), 
TbO2(111) and α -Al2O3(0001) plotted against the formation enthalpy of 
the metal adatom’s most stable oxide. TbO2(111) adsorption energies are 
plotted on the right (blue) y axis while the remaining data are plotted on 
the left y axis (due to scale difference). Vertical grey lines are label guides. 
Dashed lines represent the best linear fit to the data for each support, with 
fit equations and quality given in Supplementary Table 2.
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reducible surface, which strongly adsorbs the metal atoms that  
readily oxidize, such as iridium, ruthenium and vanadium. The 
notion that the surface’s reducibility measures its capacity to strongly 
adsorb metal atoms also explains the larger variations in vanadium 
adsorption energies compared with silver adsorption energies.

If surface reducibility, as measured by the oxygen vacancy for-
mation energy (Δ Evac), serves as a reasonable descriptor for the 
varying slopes in Fig. 2, the oxygen vacancy formation energy in 
a support should correlate with the adsorption energy of a specific 
metal. In Fig. 4, the surface adsorption energies of silver, iridium 
and palladium atoms are plotted against each oxide support’s 
reducibility. As shown in Fig. 4, a linear trend emerges, this time 
for each metal across varying supports. These linear trends indi-
cate a relationship between the Δ Evac of a support and the strength 
to which that support can bind a metal atom. Whereas Fig. 2 
shows the characteristics of the metal adatom that influence strong 
adsorption energies to an oxide support, Fig. 4 shows the charac-
teristics of the oxide support that influence its ability to strongly 
bind metal atoms. That is, metal atoms with a higher affinity for 
oxygen bind strongly to oxide supports, and supports that readily 
release oxygen bind metals more strongly. The equations and mean 
average errors for the best-fit lines shown in Fig. 4 are reported in 
Supplementary Table 3.

The adsorption energy and oxygen vacancy formation energy 
correlations obtained in this study are stronger than those recently 
reported by Hemmingson and Campbell10 when attempting to 
compare experimental adsorption energies with computationally 
derived oxygen vacancy formation energies. It is likely that the lack 
of an apparent trend between experimental metal adsorption ener-
gies and computational oxygen vacancy energies results from the 
difficulty in ensuring that the DFT data and experimental data are 
properly normalized with respect to metal coverage and oxygen 
vacancy concentration on the surface. The concentration of surface 
oxygen vacancies is known to significantly influence the oxygen 
vacancy formation energy35. The oxygen vacancy formation energy 
is highly dependent on the size and shape of the simulation cell, 
as well as the local configuration of vacancies, making it difficult 
to cross-compare the experimental and computational data. In this 
study, the oxygen vacancy formation energy and metal adsorp-
tion energy are always computed with simulation cells that are the 
same size, thus enforcing the proper normalization between metal 
adatom coverage and oxygen vacancy concentration. The oxygen 
vacancy and metal adsorption data are therefore directly compa-
rable, leading to the strong correlations seen in Figs. 2 and 4.

While the trends between adsorption energy and oxygen vacancy 
formation energy hold for supports over a wide range of surface 
reducibilities, they do not accurately describe the adsorption energy 
differences between surfaces with similar oxygen vacancy formation 
energies (for example, CeO2(110), CeO2(111) and TiO2(011) sur-
faces). As discussed below, metal–metal binding can also contribute 
to differences in metal atom adsorption energies and can partially 
explain differences among supports. Specific binding geometries, as 
well as surface reconstruction and relaxation, will inevitably con-
tribute noise to the presented correlations. It is also important to 
consider that DFT has well-known deficiencies when describing 
highly correlated rare-earth oxides such as CeO2 and TbO2, even 
with the inclusion of the U correction. Despite such deficiencies, 
we have included analyses of these systems due to their industrial 
relevance and importance to the catalysis community—particularly 
CeO2. Within the context of this study, inaccuracies inherent to DFT 
probably result in total formation energies and oxygen vacancy for-
mation energies that are overestimated in magnitude on the CeO2 
and TbO2 facets considered here. However, we anticipate that the 
overall trends are still meaningful, as they agree with trends related 
to oxides for which DFT and DFT +  U are known to perform better 
for these types of analyses.

Electronic structure analysis. This section provides electronic 
structure analyses of the trends identified in the previous section, 
which serve to elucidate the electronic mechanism behind SMSIs. 
We focus on two metal atoms and two oxide supports: silver and 
iridium (representing metals with low and high oxide formation 
enthalpies, respectively) and CeO2(111) and MgO(100) surfaces 
(representing low and high oxygen vacancy formation energies, 
respectively). These metal atoms and oxide supports are also tech-
nologically relevant in many industrial applications, and have been 
the subject of many studies4,5,21,27.

The binding energies of silver to CeO2(111) and MgO(100) are 
− 1.74 and − 0.44 eV, respectively. For iridium, the binding ener-
gies are − 4.26 and − 2.00 eV, respectively. These adsorption energy  
values follow the trends described in the previous section: silver 
binds weakly to each surface because it has a low affinity for oxygen, 
and MgO(100) binds both atoms weakly because its oxygen vacancy 
formation enthalpy is endothermic. The density of states (DOS) 
plots in Fig. 5 demonstrate clear differences in the adsorption of 
silver and iridium on the CeO2(111) surface. The many overlapping 
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Fig. 4 | Correlation between metal/support adsorption energies and the 
support’s oxygen vacancy formation energy. Adsorption energies of silver, 
iridium and palladium atoms to TbO2(111), α -Al2O3(0001), CeO2(111), 
CeO2(110), TiO2(011), ZnO(100) and MgO(100) supports plotted against 
the corresponding oxygen vacancy formation energies of the support. 
Vertical grey lines are label guides and the dashed lines represent the best 
linear fit of the data.
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states between Ce3+, O2− and Irδ+ below the Fermi level in Fig. 5a 
suggest hybridization between iridium, cerium and oxygen orbitals, 
reflecting the formation of surface bonds responsible for the strong 
adsorption of iridium on CeO2(111). Conversely, the overlap in  
Fig. 5b of only one state between Ce3+, O2− and Agδ+ below 
the Fermi level demonstrates weaker silver adsorption to the 
CeO2(111) surface.

A visual representation of charge transfer upon metal adsorp-
tion on CeO2(111) is shown in the isostructural charge density dif-
ference plots presented in Fig. 6a,b. Figure 6a demonstrates that 
iridium adsorption on CeO2(111) causes significant charge transfer 
between the iridium adatom and the surface. Charge initially sur-
rounding the iridium adatom redistributes towards neighbouring 
oxygen and cerium atoms, where two cerium atoms are reduced 
by the formation of an Ir2+ state. This reduction is evident in the 
charge density difference’s distinct resemblance to f orbitals local-
ized on adjacent cerium atoms, and by the Bader charge differences 
and site-projected magnetic moments reported in Table 1. Cerium 
atoms with a total magnetic moment approaching one represent 
Ce3+ ions. Indeed, the formation of interfacial Ce3+ ions has been 
reported in several computational and experimental studies5,34,36.  
In Fig. 6b, silver exchanges significantly less charge with CeO2(111), 
reducing only one cerium atom forming an Ag+ state. Bader charges 
are used here to qualitatively compare charge transfer between  

different metal adatoms and oxide supports, which is adequate for 
determining physically relevant trends.

While the reduction of surface cerium atoms in both  
Ir/CeO2(111) and Ag/CeO2(111) may be interpreted as stem-
ming from the metal atoms’ interaction with oxygen atoms, the 
adsorbed metal does, in both cases, interact with surface cerium 
atoms directly. Examination of the charge density difference plot of  
Ir/CeO2(111) in Fig. 6a reveals the presence of metal–metal binding 
between the iridium and cerium atoms (labelled Ce2). The green 
band linking the two atoms indicates a charge accumulation in a 
metal–metal hybrid orbital, which corresponds to the peak just 
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Table 1 | Bader charge differences and total magnetic moments 
after iridium and silver adsorption on CeO2(111) and MgO(100) 
surfaces

Silver adsorption Iridium adsorption

Bader charge 
difference (e–)

Total 
magnetic 
moment (μB)

Bader charge 
difference (e–)

Total 
magnetic 
moment (μB)

CeO2(111)
Ce1 0.25 0.84 0.07 0.02

Ce2 0.06 0 0.28 0.96

Ce3 0.06 0 0.13 0.02

Ce4 0.06 0 0.26 0.93

O1 0.02 0 − 0.09 − 0.14

O2 0.01 0 − 0.1 − 0.14

O3 0.01 0 0 − 0.01

Metal − 0.55 0 − 0.84 − 0.65

MgO(100)
O1 − 0.16 0.12 − 0.34 − 0.01

Metal 0.15 0.72 0.39 0.94

The atom labels correspond to the labels shown in Supplementary Figs. 1–13. A positive difference 
indicates the accumulation of negative charge.  μB, Bohr magneton units.
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above the Ce–O band on the Ir/CeO2(111) DOS plot in Fig. 6d, as 
indicated by the image of charge density associated with that peak 
(also showing a band of electron density linking the iridium and 
cerium atoms). Metal–metal binding between metal adatoms and 
metal oxides has previously been reported15,20, but has never been 
considered influential in SMSIs. This possibility is examined in the 
following sections.

Electronic structure analyses can also explain the energy differ-
ences between CeO2(111) and MgO(100) in the binding of metal 
adatoms. Since MgO(100) is irreducible, it is unable to readily 
accept electron density donated by a metal adatom and instead 
reduces the metal adatom, as indicated by a positive Bader charge 
difference on the metal adatom (Table 1). Whereas the adsorption 
of iridium onto CeO2 involves the interaction between neighbour-
ing oxygen and cerium atoms, the metal–support interactions from 
the adsorption of iridium onto MgO(100) are localized onto one 
surface oxygen atom. This transfer of electron density from the sup-
port to the adsorbed iridium atom is evident in the isostructural 
charge density difference of Ir/MgO(100) shown in Fig. 6c.

Physical descriptors for the prediction of binding energy. Our 
DFT results have shown correlations between the binding energy of 
a metal adatom, its oxide formation enthalpy and the support’s oxy-
gen vacancy formation energy. Metal–metal binding is also evident 
from DOS and Bader charge analyses. Although the above trends 
suggest linear correlations, these primary descriptors can be used 
(and combined) in various other functional forms to predict the 
adatom binding energy. We therefore performed a systematic analy-
sis to identify the most important analytical form for each descrip-
tor set. In statistical learning, various shrinkage methods, such as 
ridge regression, LASSO and least-angle regression26, can be used to 
identify within a feature space a subset of descriptors that minimize 
deviation between the predicted and actual values. These methods 
are also used in machine learning applications.

Our objective is to determine the descriptors that yield the best 
prediction for the binding energy, considering those suggested by 
the DFT analysis in the previous sections as well as other available 
descriptors of structural and electronic properties. This problem is 
readily addressed using statistical learning based on compressed 
sensing37. Here, we adopt a systematic analysis method based on 
compressed sensing described by Ghiringhelli et al.38,39, where a 
feature space is generated by combining primary descriptors using 
analytical formulas. LASSO is then used to identify the most impor-
tant descriptors via equation (1),

∑ ∑ ∑λ− + ∣ ∣
∈ = = =
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where P is a column vector of responses (that is, DFT binding 
energies) that has been centered, d is a (N ×  M) dimensional design 
matrix of descriptors and c is the column vector of coefficients that 
is to be determined, j and k are indices, and R represents the set 
of real numbers. λ is a penalty parameter that, when increased, 
decreases the number of non-zero components of vector c. For 
a maximum value of λ, all elements of c will be zero, and as λ is 
decreased more elements will take non-zero values. Since LASSO 
is not scale invariant, we standardized26 the descriptor matrix, d, 
to have zero-mean and unit-variance by subtracting from each 
column its mean and normalizing by its s.d. This normalization 
renders all descriptors in the common scale and makes the pen-
alty parameter, λ, meaningful. After enforcing a cutoff value of λ, a 
subsequent exhaustive search using l2 norm minimization over all 
possible subsets of descriptors with non-zero c values is completed. 
Due to the linear correlation between descriptors, the best results 

may not be achieved solely by employing LASSO. Details of this 
composite method (LASSO +  lo) can be found elsewhere38,39, and 
examples of the application of LASSO for material-science prob-
lems can be found in refs 40,41.

Feature space. We completed two analyses with varying numbers of 
primary descriptors. For the first analysis, we used a minimal fea-
ture space based on the DFT analysis presented above. This first 
feature space included only the oxide formation enthalpy of the 
metal adatom (Δ Hf,ox =  Δ Hsub – Δ Hf,ox,bulk)—where Δ Hsub is the heat 
of sublimation and Δ Hf,ox,bulk is the oxidation energy of the bulk 
metal—and the oxygen vacancy energy of the oxide support (Δ Evac) 
as the two primary descriptors. The secondary descriptors included 
ratios, differences, summations and squares of the primary descrip-
tors, as well as absolute differences and squares of absolute differ-
ences. This generated a total of ten descriptors in the first feature 
space (Supplementary Table 4).

For the second analysis, the primary feature space was expanded 
to also include atomic properties of the adatom and support. The 
chosen properties have been proposed in the literature to have some 
correlation to metal–metal and metal–oxide interactions and have 
been previously used in machine learning approaches39–44. Atomic 
properties of the metal adatom (m) and support (s) include the 
electronegativity of the metal in Pauling and Martynov–Batsanov 
scales, (n – 1)th and nth ionization energies (IEn) with the bulk 
metal in the n+ oxidation state, electron affinity, highest occupied 
molecular orbital (HOMO) and lowest unoccupied molecular 
orbital (LUMO) of single metal atoms relative to vacuum calculated 
with DFT, s and p orbital radii2,45 (Zunger46 and Weber–Cremer47), 
number of valance electrons and atomic number. Two parameters 
derived from a previously reported semi-empirical method for pre-
dicting metal–metal binding enthalpies were also included48. These 
two parameters, first introduced by Miedema et al.48, represent the 
chemical potential of the electrons in the metal (ϕ ), and were com-
bined with parameters that represent the discontinuity in electron 
density between the two binding metals (η1/3). Δ Hsub and Δ Hf,ox,bulk 
of each metal adatom were also included as individual descriptors. 
For oxide surface properties, the descriptor set includes Δ Evac and 
the workfunction and surface energy (γ) of the support. The coor-
dination number of the metal and oxygen in the support, and bond 
valance49 of the metal in the support, were also included. Values 
used for these primary descriptors, calculation methods and data 
sources are provided in the Supplementary Information.

The secondary descriptors for this feature space are populated 
with the absolute value of ratios, differences, summations and mul-
tiplications of primary descriptors, followed by taking the inverse, 
square and square root of all of the generated descriptors, where 
we only allow analytical functions (summation and subtrac-
tion) between descriptors with consistent units. Since the num-
ber of features grows rapidly during this process, in some cases, 
we used physical intuition to remove unphysical (for example, 

+(HOMO LUMO )m s ) and unimportant (for example, +(EA EA )m s )  
analytical forms. In the final step, all primary and secondary 
descriptors are combined, and another set of descriptors is gener-
ated by multiplying each descriptor of this set with the remaining 
descriptors (avoiding repetition). The combination of these two sets 
yields a final feature space with 333,932 descriptors. The full list 
of analytical formations applied to generate the secondary feature 
space is provided in the Supplementary Information. While a sim-
ple least-squares regression is adequate for screening out the best 
of the ten descriptors in the first feature space, it is computation-
ally intractable for screening the second feature space. Therefore, 
application of LASSO +  lo is necessary with such a large feature set.

LASSO +  lo analysis. The first feature space contains no metal–
metal binding parameters. The penalty term, λ, is logarithmically  
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decreased from λmax =  2.363 to λmin =  0.001 ×  λmax following the 
procedure described in ref. 39 in which all ck values are zero at 

λ = ∣ >∣d Pmax ,
N j jmax
1 50. The descriptors with non-zero coefficients 

in sequence with decreasing λ are: (1) (Δ Hf,ox – Δ Evac)2; (2) Δ Evac; (3) 
Δ Hf,ox/Δ Evac; (4) Δ Hf,ox – Δ Evac; and (5) Δ Evac

2, where the employed 
cutoff is λ =  0.0044. To check the consistency of these descriptors, 
we conducted several trials in which we randomly left out 10% of 
the DFT-predicted binding energies from the analysis. The same 
descriptors appeared in the same sequence for all trials. Next, an 
exhaustive search using l2 norm minimization with all possible 
combinations of descriptors with one (1D) to five (5D) elements 
was performed with all data points. The descriptor combinations 
with the lowest root mean square error (RMSE) for 1D to 5D are 
1.65, 1.16, 1.03, 0.96 and 0.91 eV, respectively. The predictor equa-
tions are given in Supplementary Table 5. Figure 7a demonstrates 
that, intuitively, the prediction improves with increasing numbers 
of descriptors, where five descriptors (5D) yields the lowest RMSE. 
Even at 5D, the RMSE remains high (0.91 eV), suggesting that our 
descriptor set is incomplete. With such a small feature space, we 
could have reached the same predictor equations using direct l2 
norm minimization over the ten descriptors, but have detailed the 
complete procedure used here as it was repeated for the larger sec-
ond feature space.

For the second feature space, all 333,932 descriptors were screened 
using LASSO, with λ logarithmically decreased from λmax =  2.7921 
to λmin =  0.001 ×  λmax. A total of 75 descriptors were identified with 
the cutoff value reduced to λ =  0.0602. An exhaustive search using 
l2 norm minimization yields 1D to 5D sets that have significantly 
lower RMSE values compared with feature space 1. The 1D descrip-
tor set of the second feature space outperforms the 5D descriptor 
set of the first feature space (Fig. 7b). Table 2 reports the 1D–3D 
descriptor equations with RMSE, and Fig. 7b shows the comparison 
between predicted and DFT binding energies. Here, all data points 
were used for training. The 4D and 5D descriptors are reported in 
Supplementary Table 6. The optimal 5D descriptor set reduces the 

RMSE to 0.4096 eV. To check the robustness of these descriptors, we 
left out 10% of the data (randomly selected) and used the remain-
ing data for our LASSO +  lo analysis. We repeated the procedure 50 
times, standardizing the remaining 90% of the training data each 
time before the LASSO step. This confirmed that no information 
from the test set was transferred to the randomly selected train-
ing data. For 1D and 2D, the same descriptors were predicted in 
74 and 68% of the trials, respectively. For 3D–5D, the variations in 
the selected descriptor set were larger. However, similar RMSE val-
ues for different trials indicate that in higher dimensions there are 
more combinations of similar primary descriptors that can equally 
describe the randomly selected training data. For example, when all 
data points are used for training, the RMSE varies by 0.03 eV within 
the top five 1D descriptors, and for 3D it only varies by 0.006 eV. 
For the reported coefficients in Table 2, we used all available data 
points and did not keep a separate set of data for testing due to the 
limited availability of data (91 points). However, for 50 repeated 
‘leave 10% out’ analyses, the average RMSEs when applying the 1D 
and 2D descriptors to predict the test set with the left-out data were 
0.6969 ±  0.2473 eV and 0.5948 ±  0.1632 eV, respectively, which sup-
ports their applicability to external data points.

In agreement with our DFT results, the top five 1D descriptors 
contain both the metal adatom’s oxidation enthalpy and the sup-
port’s oxygen vacancy formation energy (Supplementary Table 7). 
The ratio of these values (that is, |Δ Hf,ox/Δ Evac|) always appears in 
the 1D descriptor multiplied by a second term. Metal atoms bind 
more strongly to surfaces when they have increased oxide forma-
tion enthalpies (that is, when they form more stable oxide) and bind 
less strongly to surfaces that have increased surface oxygen vacancy 
formation energies (that is, surfaces that are less reducible). Hence, 
|Δ Hf,ox/Δ Evac| is a descriptor that captures this trend. TbO2(111) is 
the only surface with a negative oxygen vacancy formation energy 
(− 1.1 eV). Although the absolute value of the ratio does not cap-
ture the negative Δ Evac, we are still able to model this surface since 
the oxygen vacancy formation energy of TbO2(111) is much smaller 
than all other surfaces.

The lowest RMSE is obtained when the second term is the 
coordination number of the surface metal atom in the bulk 
phase (CNbulk

m ), suggesting again that the surface metal’s ability 
to form bonds plays an important role in metal/support bind-
ing. A similar RMSE is obtained with this second term in the 
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Fig. 7 | Comparison between descriptor-predicted and DFT binding 
energies. a, Feature space 1 for 1D (top) and 5D (bottom). b, Feature space 
2 for 1D (top) and 3D (bottom). 

Table 2 | equations for binding energy prediction based on 
lASSO + lo analysis using feature space 2

Binding energy predicting equation rMSe (eV)

1D 





− × × −Δ

Δ
0.1507 CN 0.3962

H

Ebulk
m f,ox

vac

0.6873

2D 















− × × −

× × −

Δ
Δ

Δ
Δ

0.4839 EA 1.1756
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H

E
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H
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s
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vac
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3D 

































η

− × × −
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− × × Δ −

Δ
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Δ
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0.3206 EA 1.0850

2.1228 0.3279

H
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IE IE
IE

1
3

2
n n

n

f,ox

vac

s

m
f,ox

vac

m s

m

0.5028

CNm
bulk is the coordination number of the support metal in the bulk phase. Δ Hf,ox, Δ Evac, electron 

affinity (EA), LUMO, L and ionization energy (IE) are in eV, and Δ ŋ1/3 is in (density unit)1/3 (ref. 48).
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1D descriptor replaced by the LUMO energy (or √ LUMO) of 
the surface metal atom, or difference of nth ionization energy 
of the adatom and surface metal atom weighted by the nth ion-
ization energy of the surface metal. A term involving (p +  s) 
orbital radius (Zunger) also gives similar RMSE. These descrip-
tors are all highly correlated, as demonstrated by the calculated 
Pearson correlation coefficient (Supplementary Table 7). The 
additional term in the 1D descriptors is either a characteris-
tic of the support metal atom or a combined property of both 
the adatom and the support metal, suggesting that properties 
related to metal–metal interactions are required to better pre-
dict adatom binding. For a 2D descriptor set, both elements of 
the top five descriptor pairs (Supplementary Table 8) contain the  
|Δ Hf,ox/Δ Evac| term. Among the top five descriptor pairs, at 
least one of the multiplication terms is a combined property of 
the adatom and surface metal atom. These terms involve their 
LUMO/HOMO ratio, electron affinity, ionization energy or mul-
tiplication of (p +  s) orbital radius terms. This indicates that the 
metal–metal interaction is of secondary importance compared 
with the metal–oxygen parameters, yet must be included. Similar 
terms are also present in the 3D descriptor set. The last descrip-
tor includes (Δ η1/3)2, which is a known form of the Miedema 
parameters48 that represents metal–metal interaction. In 4D 
and 5D, we find that surface properties are introduced, but our  
‘leave 10% out’ analysis shows that the possible combina-
tions with lowest RMSE will vary greatly. Hence, 1D and 2D  
descriptors are more robust.

Our LASSO +  lo analysis agrees well with our DFT analyses, 
indicating that neither Δ Hf,ox nor Evac can alone predict the bind-
ing energy. We conclude that their ratio is a better predictor when 
multiplied by either a surface metal property or combined property 
of both the adatom and the surface metal atom. Higher accuracy 
in binding energy prediction is achieved when metal–metal inter-
actions are captured in descriptor terms that include properties of 
both the adatom and the surface metal in the ≥ 2D descriptor sets.

Conclusion
Adsorption energies obtained by DFT were reported for a range 
of early and late transition metals when adsorbed onto several 
reducible and irreducible oxide supports. These adsorption ener-
gies are correlated with properties of both the metal and the sup-
port; namely, the metal oxidation enthalpy, support reducibility 
and enthalpy of metal–metal interactions. To explain the trends in 
SMSIs, electronic structures for metal/oxide systems that exhibit 
both strong and weak interactions were analysed. Metal–metal 
interactions between adatom and support were observed for every 
metal/oxide system except for those supported on MgO(100). The 
parameters that influence strong metal–support interactions were 
used in conjunction with LASSO +  lo to develop a predictive model 
for screening metal/support combinations that produce strongly 
adsorbed SACs.

Methods
DFT specifications. Spin-polarized DFT calculations were employed to investigate 
the adsorption of single transition metal atoms on oxide supports. The calculations 
were performed using the Vienna Ab initio Simulation Package51, using the 
Perdew–Wang (PW91)52 version of the generalized gradient approximation 
as the exchange-correlation functional, with the projector augmented wave53 
approximation representing the atomic core regions. An atomic force convergence 
criterion of 0.05 eV Å−1 was used to identify optimized geometries. Plane wave basis 
sets were truncated at a kinetic energy cutoff of 450 eV. Valences for each atom type 
are reported in Supplementary Table 9.

A range of non-reducible and reducible low-index oxide supports, including 
MgO(100), CeO2(111), CeO2(110), TbO2(111), ZnO(100), rutile TiO2(011) 
(referred to as TiO2(011) in this paper) and α -Al2O3(0001), were studied in their 
stoichiometric states. Each surface facet was cleaved from an optimized bulk unit 
cell and then expanded such that each surface had at least four oxygen atoms in the 
outermost oxygen layer, except for α -Al2O3(0001), which had three oxygen atoms. 

A surface normal lattice vector of 30 Å gave ample vacuum space between periodic 
slabs. The lattice constants for optimized surface structures and Monkhorst–Pack54 
k-point sampling used for each facet are reported in Supplementary Table 10. DFT 
fails to accurately represent localized d and f orbitals, and as such we employed 
the Dudarev DFT +  U55 formalism to treat the f states of TbO2 and CeO2 and the 
d states of TiO2, using literature-derived U values of 6 eV56, 5 eV57 and 4.2 eV19, 
respectively. DFT +  U with the PW91 functional yields charge transfer and 
adsorption energy values comparable to the hybrid functional HSE06 for metal/
oxide systems (for example, see ref. 58 and the references therein), verifying that 
it is appropriate for studying the metal/oxide systems investigated here. Various 
single metal atoms were adsorbed on the surface models, including both late 
transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh and Ir) and early transition 
metals (Fe, Ru, Mn and V). All high-symmetry adsorption sites of each surface 
(for example, hollow, bridge and atop) were tested to identify the most favourable 
adsorption geometry for each metal–oxide pair. A dipole correction59 was used to 
correct the unphysical interaction between dipoles in adjacent images along the 
surface normal for asymmetric slab models. Viable adsorption sites for CeO2(111) 
and MgO(100), which were the primary focus in the later sections of this work, 
are shown in Fig. 1. Detailed descriptions of all adsorption sites can be found in 
Supplementary Table 1.

Calculation of adsorption energies and correlation parameters. Adsorption 
energies were calculated using equation (2), where −Emetal (g)  is the total DFT 
energy of the metal atom in the gas phase, is the energy of the stoichiometric oxide 
support, and Esupport is the energy of the total metal/support system.

Δ = − −∕ −E E E E (2)ads metal support support metal (g)

The reducibility of each oxide support, quantified by the support’s surface 
oxygen vacancy formation energy, was investigated as a descriptor for the strength 
of the metal–support interaction. The oxygen vacancy formation energy was 
calculated using equation (3),

Δ = + −
−

E E
E

E
2

(3)vac M O
O

M On x n x1
2

where is the energy of the reduced support, 
−

EM On x 1
 is the energy of gas-phase 

molecular oxygen and EM On x
 is the energy of the stoichiometric support. Note 

that the vibrational energy and entropy of gas-phase O2 are not included, as these 
corrections are uniform across all oxides and therefore do not impact relative 
trends between supports.

To predict the binding strength of single metal atoms, we use the metal atom’s 
oxide formation enthalpy (ΔHf,ox), a descriptor first proposed by Campbell and 
Sellers8. This oxide formation enthalpy is determined from experimental reference 
data using the relation presented in equation (4),

Δ Δ Δ= −H H H (4)f,ox sub f,ox,bulk

where ΔHsub is the sublimation energy of the metal atom (that is, the 
experimentally determined cohesion energy of the bulk metal) and ΔHf,ox,bulk  is the 
formation enthalpy of the metal’s most stable oxide relative to the bulk metal and 
O2 (per metal atom). With the inclusion of ΔHsub, ΔHf,ox is related to the energy 
of a single atom rather than the bulk metal phase. Experimental ΔHsub and values 
used for each metal type are provided in Supplementary Table 11.

Code availability. The MATLAB code written to perform the LASSO +  lo analysis 
is available under Massachusetts Institute of Technology licence in the following 
online repository: https://github.com/tsenftle/Metal-Oxide-LASSO-lo.git.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon 
reasonable request. The following files are available in the Supplementary 
Information: adsorption sites and energies for each combination of metal 
adatom and oxide; cell configuration, size, number of surface layers, lattice 
constants, exchange-correlation functionals, k-points and U correction for each 
DFT-optimized surface; valence configurations for each metal adatom and 
oxide; oxide formation enthalpies for each metal adatom; slopes, y intercepts, 
R2 values and mean absolute errors for each trend in Figs. 2 and 4; values of 
primary descriptors; the procedure for feature space generation; and RMSEs of 
different descriptor combinations.
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